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Introduction
Time of Flight Mass Spectroscopy has become the most 
widely used technique for identifying very large organic 
molecules. This technique has become the method of 
choice for most drug discovery and polymer 
applications.

The Time of Flight technique is frequently chosen 
because it is the only technique capable of the high 
mass sensitivity needed for many substances.

Recently, table top RGA, ICPMS, GC and LCMS 
instruments have emerged.
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Introduction (Continued)

The Time-Of-Flight mass spectrometry technique is an 
old technique which has seen a resurgence in 
popularity due to cost reductions in electronics and 
the advent of high temporal resolution detectors. 
The availability of high temporal resolution detectors 
has enabled shorter flight tubes to be used, which 
lead to smaller vacuum systems and lower overall 
instrument costs.
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Introduction (Continued)
In the operation of a typical MALDI TOF Instrument, analyte molecules, dispersed 
among matrix material are ionized by a nitrogen laser. (Figure 1)
The resultant ions are held (delayed extraction) and then ejected down a flight tube 
through the application of high voltage pulses.
Mass separation occurs during the flight (typically 1 meter) to the detector, with the 
lower mass ions arriving first, followed by progressively larger mass ones.
Upon arrival at the detector, the electron multiplier will produce a charge pulse 
corresponding to the arrival time of each ion. (Figure 2)
A high speed digitizer is then used to record the arrival times of the ions, from which 
the mass of the ion can be determined.
Three types of electron multipliers have been historically used in TOF-MS. Single 
Channel Electron multipliers (SEM), Discrete Dynodes (DD), and Microchannel Plate 
(MCP) based. Single Channel Electron Multipliers are not used in modern instruments 
because of limitations in temporal resolution (20-30 ns FWHM) and dynamic range. 
Discrete dynode electron multipliers exhibit good dynamic range, but are used in 
moderate and low resolution applications because of relatively poor pulse widths 
(Typically 6-10 ns FWHM). MCP based detectors are used in high resolution 
applications because they provide the highest (650 ps) temporal resolution, however 
they are limited in dynamic range to about 20 mhz/cm2 of active area.
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Typical MALDI Time-of Flight Mass 
Spectrometer Operation
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Polymer Sample Polyethylene 
Glycol



Figure 3
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Development History

The First Time of Flight Detectors were 
introduced in the late 1960s, were 
discrete dynode multipliers and single 
channel electron multipliers known as 
Channeltrons™. Channeltrons ™
became the detector of choice 
because of their stable performance.

These devices had relatively poor 
temporal resolution by today’s 
standards with pulse widths ranging 
from 20 – 50 ns. 



Figure 4
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Development History

TOF and FTDs were Detectors utilizing 
microchannel plates were 
commercialized in 1976.

These devices incorporated 
microchannel plates with 25 micron 
pores and as a result had temporal 
resolutions of about 2 ns. 

Although very bulky, these devices 
were  the first to incorporate 50 ohm 
impedance matched anode 
technology which resulted in 
diminished signal ringing.



In 1994, the AP Time of Flight Detector 
was introduced. 

This compact detector was less than one 
inch tall, maximizing the flight tube 
length. 

By reducing the pore size to 5 um the 
temporal resolution of the detector was 
improved to 800 ps with a rise time of 
just under 400 ps.

The detector design enabled end users to 
refurbish the detector in minutes by 
simply replacing the cartridge containing 
the microchannel plates.  

A bakable version was introduced in 
2000, allowing rapid system degassing.

Figure 5
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Development History



Figure 6
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Development History

In 1997, the Mini Time of Flight 
Detector was introduced. 

This miniature detector was 
developed for portable 
instruments. Featuring the 
same pore size microchannel 
plates as the AP TOF (5 um), 
the temporal resolution of the 
detector was improved to 800 
ps with a rise time of just under 
400 ps.
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In 1999, the Bipolar TOF Detector was 
introduced.

This detector was designed to enable 
both positive and negative ion 
detection at post accelerations up to10 
Kv.

The detector also features an electro-
optically isolated readout to protect the 
instrument electronics.

Sub- nanosecond rise times
and a pulse width of 2.4 ns 
are easily achieved.

Figure 7



Discussion
Improving the temporal resolution of the ion detector 
will enable resolution of lost peaks (Figure 8)

The temporal resolution of a microchannel plate 
(Figure 9) based detector is ultimately determined by 
the electron transit time (Figure 10) through the 
channel and the anode impedance.

The electron transit time of a microchannel plate can 
be decreased by shortening the channel length. In 
order to maintain proper operating conditions, the 
channel diameters must be reduced proportionally.  
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Polyethylene Glycol
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Microchannel Plate Configurations
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Microchannel Plate Cross Section



Objectives

The primary objective of this development project was to significantly 
increase the temporal resolution of the conventional Time of Flight Mass 
Spectrometer Detector. 
In order to increase the temporal resolution, the MCP pore size must be 
significantly reduced. Reengineering the fabrication process was necessary 
in order to overcome obstacles materials fiber draw, wafer grind and polish, 
activation and test.  
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Experimental Method
Microchannel Plates are fabricated by a series of fiber draw 
operations involving a two glass system. 
Precision alterations were made to the draw parameters 
resulting in the successful fabrication of 18mm active diameter 
format MCPs with 2.3 micron (Figure 11) channel diameters.
Interdiffusion obstacles were overcome by the development of 
a new process.
New grinding and polishing techniques were developed in 
order to produce microchannel plates as thin as 80 microns. 
A cartridge assembly  (Figure 12) containing two microchannel 
plates, a grounded mesh and an output biasing system was 
developed in order to accommodate the thin microchannel 
plates.
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Microchannel Comparison



Figure 12
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Results

Microchannel plates with a pore sizeof 2.3 
microns and an open Area ratio of 65%  
(Figure 11) were successfully fabricated.

Single plate gains (figure 13)exceeded 10,000 
and Chevron Gains (Figure 14) up to 
10,000,000 were produced.

Rise times approaching 200 ps with pulse 
widths of 400 ps (Figure 15) were achieved, 
improving by a factor of 2 the best 
performance previously available. (Figure 16)

A self biasing cartridge, incorporating a 
grounded grid was developed for ease of 
handling the MCPs.
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Results - Single MCP Gain
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Results - Chevron Gain
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Results - Temporal Resolution



Results – Pulse Width
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Conclusions

A low profile, time-of-flight detector for mass spectrometry 
incorporating the smallest pore microchannel plates ever 
developed has been successfully produced. 
The temporal resolution of this detector is over twice that of 
the best detector currently available.
The availability of this detector can significantly reduce 
instrument size and cost, while improving mass resolution.  
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