Z-Stack MCP and Detector Initial Start-up and Electrical Test Procedure

NOTES: Read the entire start-up procedure before applying any voltages. Refer to Diagram 1 - Typical Wiring Diagrams - for each detection mode. The suggested bias voltage for a Resistive Anode Encoder (RAE) is 300 volts.

CAUTION:
Do not exceed 1000V per MCP.
When installing a flange mounted detectors gradually tighten the bolts in a star pattern (DO NOT exceed 20 foot-pounds per bolt). Failure to do so could cause the fiberoptic to crack.

RECOMMENDATIONS:
For optimal lifetime, operate the detector at the minimum voltage necessary to obtain a useable signal.
Do not operate the phosphor screen at a higher than recommended potential.

PROCEDURE
Make all connections to the assembly. Check all electrical connections for possible shorted or open circuits.
Pump down to $\leq 2\times 10^{-6}$ torr and hold for at least 15 hours.

VOLTAGE APPLICATION

Electron/Negative Ion/UV Photon Detection: (for a metal anode or Resistive Anode Encoder, skip to section below)

Phosphor Screen
Ground the input of the assembly (V_i). Apply voltage to the phosphor screen (V_a) in $+250V$, 1 minute increments. Stop at $+1.0$ kV.
Apply voltage to the output of the assembly (V_o) in $+100V$, 2 minute increments. Stop at $+1.5$ kV.
Increase the voltage to V_a in $+100V$, 5 minute increments to $+3.0$ kV. Wait 5 minutes.
Increase the voltage to V_a in $+100V$, 10 minute increments to $+4.5$ kV. Wait 5 minutes.
Simultaneously increase the voltage to V_a and V_o in $+100V$, 10 minute increments to $+5.2$ kV at V_a and $+2.2$ kV at V_o.

For screens requiring a 5.0 kV potential - Increase the voltage to V_a in $+100V$, 10 minute increments to $+6.2$ kV. Wait 10 minutes.

For screens requiring a 5.0 kV potential - Increase the voltage to V_a in $+50V$, 10 minute increments to $+7.2$ kV. Wait 10 minutes.
Simultaneously increase the voltage to V_a and V_o in $+50V$, 10 minute increments to $+3.0$ kV at V_o.
When through using the detector, turn off the voltage to V_a. When the voltage drops below $+3.0$ kV, turn off the voltage to V_o.

Metal Anode/Resistive Anode Encoder
Ground the input of the assembly (V_i). Apply the specified anode bias to V_a.
Increase the voltage to both V_a and V_o in $+100V$, 2 minute increments by $+1.5$ kV at V_a and to $+1.5$ kV at V_o. Wait 5 minutes.
Increase the voltage at V_o and V_a in $+100V$, 5 minute increments to $+1.5$ kV at V_o. Wait 10 minutes.
Increase the voltage at V_o and V_a in $+50V$, 5 minute increments to $+3.0$ kV at V_o.
When through using the detector, turn off the voltages to V_o and V_a.

BEO110 Nov/09
Positive Ion/UV Photon Detection (for a metal anode or Resistive Anode Encoder, skip to section below).

Phosphor Screen
Ground the output of the assembly (V_o). Apply voltage to the phosphor sheen (V_a) in +250V, 1 minute increments. Stop at +1.0 kV.
Apply voltage to the input of the assembly (V_i) in -100V, 2 minute increments. Stop at -1.5 kV.
Increase the voltage to V_a in +100V, 5 minute increments to +2.0 kV. Wait 5 minutes.
Increase the voltage to V_a in +100V, 10 minute increments to +3.0 kV. Wait 5 minutes.
Adjust the voltage to V_i in -100V, 10 minute increments to -2.2 kV.
For screens requiring a 5.0 kV potential - Increase the voltage to V_a in +100V, 10 minute increments to +4.0 kV. Wait 10 minutes.
For screens requiring a 5.0 kV potential - Increase the voltage to V_a in +50V, 10 minute increments to +5.0 kV. Wait 10 minutes.
Adjust the voltage to V_i in -50V, 10 minute increments to -3.0 kV.
When through using the detector, turn off the voltages to the V_i and V_a.

Metal Anode/Resistive Anode Encoder
Ground the output of the assembly (V_o). Apply the specified anode bias to V_a.
Apply voltage to V_i in -100V, 2 minute increments. Stop at -2.2 kV. Wait 2 minutes.
Adjust the voltage at V_i in -100V, 5 minute increments to -2.2 kV. Wait 5 minutes.
Adjust the voltage at V_i in -50V, 10 minute increments to -3.0 kV.
When through using the detector, turn off the voltages to V_i and V_a.

TYPICAL WIRING DIAGRAMS

<table>
<thead>
<tr>
<th></th>
<th>Pulse Mode (metal anode)</th>
<th>Imaging Mode (phosphor screen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron/Negative Ion/UV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_i</td>
<td>ground</td>
<td>ground</td>
</tr>
<tr>
<td>V_o</td>
<td>3000V</td>
<td>3000V</td>
</tr>
<tr>
<td>V_a</td>
<td>3050V to 3500V</td>
<td>6000V to 8000V</td>
</tr>
</tbody>
</table>

Positive Ion/UV Photon

V_i	-3000V	-3000V
V_o	ground	ground
V_a	50V to 500V	3000V to 5000V